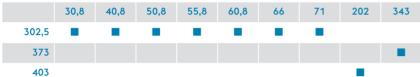


Rundstahl IBO ECOMAX

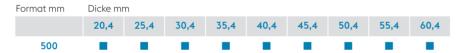
Durchmesser mm



Gewalzt oder geschmiedet, geschält bzw. überdreht.

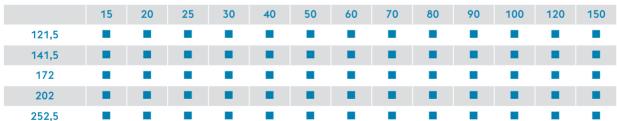
= bearbeitet

Flachstahl

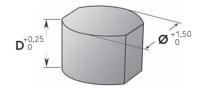


Gewalzt oder geschmiedet, alle Seiten entkohlungsfrei bearbeitet.

== bearbeitet


Gerfräste Bleche

Flächen gefräst mit Tol. + 0,5/-0 mm, Oberflächenrauhigkeit Ra max. 2,5 µm. == bearbeitet


Erodierblöcke geglüht

Durchmesser mm Dicke mm

Weichgeglüht, Dicke präzisionsgeschliffen, Durchmesser mit beidseitig gefrästen Schlüsselflächen von 5 mm. Toleranzen:

Dicke: +0,25/0 mm Durchmesser: +1,50/0 mm

KALTARBEITSSTAHL

Normen	_	(DIN)	ı
	_	(EN)	1
Lieferzustand	i ala ara al Mat		Ī
Liererzustana	weichgeglüht		1

BÖHLER K490 MICROCLEAN vereinigt Verschleißfestigkeit mit Zähigkeit auf höchstem Niveau. Dieser pulvermetallurgische Kaltarbeitsstahl ist in seiner Legierungszusammensetzung so angelegt, dass er gut bearbeitbar ist und in der Wärmebehandlung hohe Flexibilität zulässt, ohne dabei wesentliche seine mechanisch-technologischen Eigenschaften zu verändern.

Richtanalyse [%]

С	Cr	Мо	V	w	+
1,40	6,40	1,50	3,70	3,50	Nb

Physikalische Eigenschaften

Temperatur [°C]	20	100	200	300	400	500	600	700
Wärmeausdehnung [10 ⁻⁶ m/(m.K)]		10,60	11,10	11,60	11,90	12,30	12,60	12,80
Wärmeleitfähigkeit [W/(m.K)]	19,6							
spezifische Wärme [J/(kg.K)]	450							
spez. elektr. Widerstand [Ohm.mm²/m]	0,55							
E-Modul [10 ³ N/mm ²]	223							
Dichte [kg/dm³]	7,79							

Wärmebehandlung

Weichglühen

Härte nach Weichglühen	max. 280 HB

Anmerkungen: Geregelte langsame Ofenabkühlung.

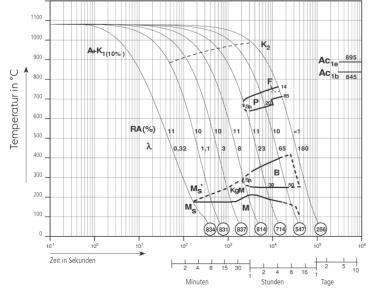
Spannungsarmglühen

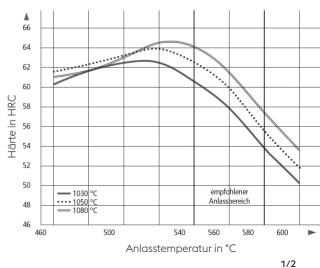
Temperatur [°C]	650	700	Haltezeit [h] ca. 1-2	

Anmerkungen: Langsame Ofenabkühlung. Zum Spannungsabbau nach umfangreicher Zerspanung oder bei komplizierten Werkzeugen.

Härten

1200


Temperatur [°C]	1030	1080		
Abschreckmedien	Öl	Gas		


Anmerkungen: Bei hohen Zähigkeitsanforderungen und bei kompliziert geformten Werkzeugen sollte das Härten aus einer niedrigen Härtetemperatur erfolgen, bei höchsten Ansprüchen an die Verschleißbeständigkeit aus einer hohen Härtetemperatur.

Anlassen: 1h/20 mm Werkzeugdicke mit anschließender Luftabkühlung – dreimaliges Anlassen im Sekundärhärtemaximum wird empfohlen. Richtwerte für die erreichbare Härte nach dem Anlassen sind dem Anlassschaubild zu entnehmen.

Anmerkungen zum Vakuumhärten: Zur Vermeidung von Restaustenit und zur Einstellung eines vollständig martensitischen und hoch angelassenen Gefüges ist auf eine ausreichend hohe Abschreckgeschwindigkeit und auf ein ausreichend tiefes Abkühlen nach dem Härten und zwischen den Anlassvorgängen zu achten. Ein Härten und Anlassen in einem Wärmebehandlungszyklus ist nicht empfehlenswert.

ZTU- und Anlassschaubild für kontinuierliche Abkühlung

